If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+41=0
a = 2; b = -20; c = +41;
Δ = b2-4ac
Δ = -202-4·2·41
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-6\sqrt{2}}{2*2}=\frac{20-6\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+6\sqrt{2}}{2*2}=\frac{20+6\sqrt{2}}{4} $
| 1000-n=3217 | | 0.36-x^2=0 | | 0.36-x^=0 | | (3x^2+4x+14)=0 | | X+(100/x)-100=0 | | 2/3=21/z | | -7x+8.4=39.8 | | 4(8+5x*2)=752 | | 2q-1/3=3q+5/8 | | X2+10x=2000 | | 3/8q=-15 | | 3-(7+4y)=y+8 | | 35+18u-5u*2=0 | | (2x+10)/5=2 | | 6t+9/8=50 | | 4x+6-7x+9=1 | | t/2+9=6t+20 | | 4=+2(x+3) | | 11-n=-16 | | (0.25)2x-1=64 | | 8p-4p(p-4)=-12-(p-8) | | Y^2=8x+5 | | -2*a=-1 | | x+(.3x)=25000 | | .35x=0.6667x | | (2x-2)^2+12(2x-2)+36=0 | | -4/9=x/4= | | 54x-45=65x+54 | | 23x-45=54x+43 | | 35x+45=45x+35 | | 65x+54=35x+58 | | 65x-54=35x-58 |